下載手機汽配人

中重型載貨汽車齒輪材料與熱處理的發(fā)展概況

作者: 汽配人網 發(fā)表于: 2008-07-31
  我國中重型載貨汽車齒輪用鋼牌號較多,主要是為適應引進當時國外先進汽車技術的要求。50年代我國從原蘇聯里哈喬夫汽車廠引進當時蘇聯中型載貨汽車(即“解放”牌原車型)生產技術的同時,也引進了原蘇聯生產汽車齒輪的20CrMnTi鋼種。  
  
  改革開放以后,隨著我國經濟建設的高速發(fā)展,為了滿足我國交通運輸的快速發(fā)展需要,從80年代開始,我國有計劃地引進工業(yè)發(fā)達國家的各類先進機型,各類國外先進中重型載貨汽車也不斷引進。同時,我國大汽車廠同國外著名汽車大公司進行合作,引進國外先進汽車生產技術,其中包括汽車齒輪的生產技術。與此同時,我國鋼鐵冶煉技術水平也在不斷提高,采用鋼包二次冶煉及成分微調和連鑄連軋等先進治煉技術,使得鋼廠能生產出高純凈度、淬透性能帶縮窄的齒輪用鋼材,從而實現了引進汽車齒輪用鋼的國產化,使我國齒輪用鋼的生產水平上了一個新臺階。近年來,適合于我國國情的國產重型汽車齒輪用含鎳高淬透性能鋼也得到了開發(fā)和應用,取得了較好效果。汽車齒輪的熱處理技術也從原50-60年代采用井式氣體滲碳護發(fā)展到當前普遍采用由計算機控制的連續(xù)式氣體滲碳自動線和箱式多用爐及自動生產線(包括低壓(真空)滲碳技術)、齒輪滲碳預氧化處理技術,齒輪淬火控制冷卻技術(由于專用淬火油和淬火冷卻技術的使用)、齒輪鍛坯等溫正火技術等。這些技術的采用不僅使齒輪滲碳淬火畸變得到了有效控制、齒輪加工精度得到提高、使用壽命得到延長,而且還滿足了齒輪的現代化熱處理的大批量生產需要。 
   
  有關文獻指出,汽車齒輪的壽命主要由兩大指標考核,一是齒輪的接觸疲勞強度,二是齒輪的彎曲疲勞強度。前者主要由滲碳淬火質量決定,后者主要由齒輪材料決定。為此,有必要對汽車齒輪用滲碳鋼的要求、性能及其熱處理特點有一個較全面的了解。 
   
  鉻錳鈦鋼和硼鋼 
   
  長期以來,我國載貨汽車齒輪使用最普遍的鋼種是20CrMnTi。這是上世紀50年代我國從原蘇聯引進的中型的汽車齒輪18XTr鋼種(即20CrMnTi鋼)。該鋼晶粒細,滲碳時晶粒長大傾向小,具有良好的滲碳淬火性能,滲碳后可直接淬火。文獻指出,在1980年以前,我國的滲碳合金結構鋼(包括20CrbinTi鋼)在鋼材出廠時只保證鋼材的化學成分和用樣品測定的力學性能,但是在汽車生產時常常出現化學成分和力學性能合格的鋼材,由于淬透性能波動范圍過大而影響產品質量的情況。例如若20CrMnTi滲碳鋼的淬透性過低,則制成的齒輪滲碳淬火后,心部硬度低于技術條件規(guī)定的數值,疲勞試驗時,齒輪的疲勞壽命降低一半;若淬透性能過高,則齒輪滲碳淬火后內孔收縮量過大而影響齒輪裝配。 
   
  由于鋼材淬透性能對輪齒心部的硬度和畸變都有極其重大的影響,1985年冶金部頒布了我國的保證淬透性結構鋼技術條件(GB5216-85),在此技術條件中列入了包括20CxMnTiH、20MnVBH鋼在內的10種滲碳鋼的化學成分、淬透性能數據。標準中規(guī)定:用于制造齒輪的20CrMnTi鋼的淬透性能指標為距水冷端9咖處的硬度為30-42HRC。在此之后,采用20CrMnTi鋼生產齒輪的齒心部硬度過低和畸變過大的問題基本上得到了解決。但是不管齒輪模數大小和鋼材截面粗細均采用同一鋼號20CrMnTi鋼顯然是不合理的。近年來,由于我國鋼材冶煉技術水平的提高以及合金結構鋼供應情況的改善,已經有條件把齒輪鋼的淬透性能帶進一步縮窄,并根據不同產品(如變速器齒輪與后橋齒輪等)的要求開發(fā)新的鋼種以滿足其要求。 
   
  通過與鋼廠協(xié)商,1997年長春一汽先后與生產齒輪鋼廠的生產廠家簽定了將20CrMnTi鋼淬透性能分擋供應的協(xié)議,例如“解放”牌5t載貨汽車上用于制造截面尺寸較小的變速器第一軸、中間軸齒輪和截面尺寸較大的后橋主、從動圓錐齒輪用20CrMnTiH鋼淬透性能組別分別為I和Ⅱ,對應淬透性能分別為J9:30—36HRC和J9=36~42HRC。 
   
  1960年前后,由于我國鎳、鉻鋼的供應緊張,影響了我國含鎳、鉻鋼材的生產。而當時我國的汽車工業(yè)是從原蘇聯引進的技術,蘇聯大量應用含鎳、鉻的鋼材。因此,當時我國汽車工業(yè)大力發(fā)展了硼鋼的開發(fā)、研制工作,用20MnVB和20Mn2TiB鋼代替20CrMnTi滲碳鋼制造齒輪。這是因為在結構鋼中加入微量硼(0.0001%-0.0035%)可以顯著地提高鋼材的淬透性能,因此鋼中加入微量硼可以代替一定數量的錳、鎳、鉻、鉬等貴重合金元素,因而硼鋼得到廣泛的應用。長春一汽曾在“解放”牌汽車齒輪生產中使用過20MnTiB和20Mn2TiB鋼。 
   
  東風汽車公司生產的“東風”牌5,載貨汽車變速器和后橋齒輪分別采用20CrMnTi和20MnVB鋼制造。同樣,也與鋼廠簽定了把鋼材淬透性能帶縮窄并分檔供應的協(xié)議。變速器和后橋主、從動圓錐齒輪用鋼分別為20CrMnTiH(3)和20MnVBH(2)、20MnVBH(3),對應淬透性能分別為J9=32~39HRC和J9=37~44HRC、J9=34~42HRC。 
   
  我國綦江齒輪廠引進了德國公司的重型汽車變速器齒輪生產技術,在國內按德國Ⅲ公司的標準試制了該公司的Cr-Mn-B系含硼齒輪鋼獲得成功。其齒輪材料的淬透性能為J10=31~39HRC 
   
  當然,20CrMnTi鋼及20MnTiB鋼、20MVB鋼等含硼鋼也存在不足。一般認為20CrMnTi等滲碳鋼是本質細晶粒鋼,滲碳后晶粒不會租化,可直接淬火。但實際上由于鋼材冶煉質量的影響,常常在正常條件下發(fā)生晶粒粗化現象。對多批材料的實際晶粒度試驗,發(fā)現相當部分實際晶粒度只有2—3級(930℃保溫3h條件下)。文獻認為,20CrMnTi由于Ti含量較高,鋼中TiN夾雜物多,尤其是大塊的TiN夾雜是齒輪疲勞時的疲勞源,它的存在會降低齒輪的接觸疲勞性能。這種夾雜物呈立方結構,受力時易發(fā)生解理開裂,導致齒輪早期失效。另一個問題是該鋼的淬透性能有限,不能滿足大直徑大模數齒輪的要求,滲碳有效硬化層深度和心部硬度均不能滿足重型齒輪的要求。此外,在熱處理過程中20CrMnTi鋼易產生內氧化和非馬氏體組織而降低齒輪的疲勞壽命。但目前在我國齒輪滲碳鋼中還沒有哪一種鋼在滲碳工藝上有20CrMnTi鋼這樣成熟和可靠。所以,它仍是目前國內使用最普遍的滲碳鋼種。20MnVB、20MnTiB和20Mn2TiB等硼鋼也存在一些缺點,如在冶煉時由于脫氧去氮不好而使硼不能起到增加淬透性能的作用,因此,使硼鋼的性能不穩(wěn)定,滲碳淬火后的齒輪畸變增大而影響產品的質量。同時由于混晶和晶粒易于粗大,致變形不易控制和韌性較差,且硼鋼齒輪根部易產生托氏體組織和碳氮共滲齒輪的黑網、黑帶。因此,目前很多工廠中止使用該鋼種。然而,決不能就此得出硼鋼不適宜作齒輪滲碳鋼的結論。含硼的滲碳鋼在國外還有使用。例如,德國著名的Ⅳ齒輪廠,一直使用由其本廠擬訂的保留鋼種ZF7,這是一種含硼的低碳鉻錳鋼。該鋼主要化學成分(質量分數,%)為0.15~0.20C,0.15~0.40S,1.0~1.3Cr,1.0~1.3Mn,0.001~0.003B。美國汽車變速器齒輪和后橋主、從動齒輪有的也采用含硼滲碳鋼,如50B15、43BVl4和94B17。因此,只要鋼廠冶煉技術跟上去,硼鋼的上述問題是能夠解決的。 
  
  20CrMnTiH、20MnVBH和20MnTiBH鋼齒輪鍛坯在連續(xù)式等溫正火爐內進行處理可以保證得到均勻分布的片狀珠光體+鐵素體。這樣可以使齒輪的熱處理畸變大大減小,使齒輪的精度提高,使用壽命延長。  
齒輪鍛坯等溫正火硬度為156~207HB。 
   
  鉻錳鉬鋼和鉻鉬鋼 
   
  22CrMnMo、20CrMnMoH和20CrMoH鋼由于有著較高淬透性而用于中型汽車齒輪。此類鋼可采用滲碳后直接淬火工藝。由于鉻錳鉬鋼和鉻鉬鋼中含有鉻和鉬等形成碳化物的元素,在滲碳過程中將促使輪齒表面碳含量增加,容易在滲碳層組織中出現大量碳化物,使?jié)B碳層性能惡化。因此,齒輪采用鉻錳鉬鋼和鉻鉬鋼滲碳時,宜采用弱滲碳氣氛,以防止形成過量碳化物。22CrMnMo和20CrMnMoH齒輪鍛坯正火后在650~670℃進行高溫回火處理,金相組織為細片狀珠光體+少量鐵素體,硬度為171~229HB。20CrMnH齒輪鍛坯最好在連續(xù)式等溫正火爐中處理,935~945℃加熱,640~650℃先預冷后等溫,可獲得均勻的鐵素體+珠光體組織,硬度為156~207HB。文獻指出,20CrMoH鋼冶煉工藝穩(wěn)定,淬透性帶較窄且易于控制,與20CrMnTi鋼齒輪比較,具有熱處理畸變??;滲層有良好、穩(wěn)定的淬透性;金相組織、滲碳淬火后的表面和心部硬度,均能較好地滿足技術要求;疲勞性能好,比較適合汽車中小模數齒輪。綜合考慮齒輪的服役條件,既保證齒輪的疲勞壽命,又減少齒輪的熱處理畸變,在用以制造變速箱齒輪時應為J9=30~36HRC,用以制造后橋齒輪時應為J9=37~42HRC。 
   
  國外先進汽車齒輪用鋼的國產化 
   
  隨著國外先進車型的引進,各種齒輪鋼的國產化使我國的齒輪鋼水平上了一個新臺階。目前,德國的Cr-Mn鋼,日本的Cr-Mo系鋼,和美國的SAE86鋼滿足了中小模數齒輪用鋼。國產載貨汽車齒輪有的采用美國牌號SAE8822H鋼,如8t和10t橋用圓錐齒輪采用SAE8822H,該鋼主要化學成分(質量分數,%)為0.19~0.25C,0.70~1.05Mn,0.15~0.35Si,0.35~0.75Ni,0.35~0.65Cr,0.30~0.40Mo。文獻認為,控制淬透性是解決齒輪畸變問題的關鍵。為減少畸變應選用Jominy淬透性帶寬在4HRC以下的H鋼。采用H鋼的齒輪熱處理后精度(接觸區(qū))比普通鋼高70%~80%,使用壽命延長。因此,工業(yè)發(fā)達國家先后規(guī)定了滲碳合金結構鋼的淬透性帶。根據需要將淬透性帶限制在很窄的范圍(4~5HRC)。1)在德國訂貨時,可以要求鋼材的淬透性能在給定的范圍內,也可以要求縮窄淬透性能的鋼材。17CrNiM06非常適合制造大模數重負荷汽車齒輪,該鋼主要化學成分(質量分數,%)為0.15~0.20C,0.40~0.60Mn,1.50~1.80Cr,0.25~0.35Mo,1.40~1.70Ni。此鋼在我國已開始生產和使用。文獻認為,在17CrNiM06鋼齒輪滲碳過程中,在適當降低滲碳后期碳勢的同時加快滲碳后的冷卻速度,由空冷改為風冷,阻止大塊碳化物的形成,然后在630cC進行高溫回火,以析出部分合金碳化物,為的是在820℃二次加熱淬火時減少殘留奧氏體量,最終獲得較好的金相組織。2)奧地利"Styer"重型汽車廠要求淬透性帶寬為7HRC。3)日本中重型貨車,如“日野”牌KB222型載重9t汽車和“日產”牌CKL20DD型載貨8t汽車的變速器齒輪及后橋齒輪廣泛采用Cr-Mo系鋼,如SCM420H和SCM822H鋼,相當于我國國產化20CrMnMoH和22CrMoH鋼。 
   
  此類鋼具有較高的淬透性能。在一定范圍內,齒輪的彎曲疲勞壽命隨著淬透性的增加而提高。文獻指出,長春一汽開始在生產“解放”牌9t載貨汽車后橋齒輪時,采用20CrMnTiH鋼,既使使用淬透性能為Ⅱ組的鋼材(J9=36~42HRC),熱處理后齒輪輪齒心部硬度也只有22~24HRC,達不到齒輪技術條件規(guī)定的要求,汽車在使用時,后橋主動和從動圓錐齒輪發(fā)生早期損壞。因此不得不選用淬透性能更高的Ct-Mo鋼,其主要成分參考日本的SCM822H齒輪鋼,該鋼材的主要化學成分(質量分數,%)為:0.19~0.25C,0.55~0.90Mn,0.15~0.35Si,0.85~1.25Cr,0.35~0.45Mo。經與鋼廠協(xié)商,生產出了國產化的新鋼種22CrMoH鋼,其淬透性能指標為J9=36~42HRC,較好地滿足了汽車齒輪的使用要求。但是,該鋼的工藝性能較差,齒輪鍛坯要經過等溫退火處理后才能進行切削加工,硬度為156~207HB,金相組織為先共析鐵素體+偽共析珠光體。此鋼淬透性能較高,普通正火容易產生粒狀貝氏體,粒狀貝氏體的出現對切削加工極為不利,不僅使刀具的使用壽命大幅度下降,而且由于異常組織的出現,總是伴隨著金相組織的不均勻性,最終造成齒輪熱處理畸變的增大。4)近年來,美國汽車制造廠家力圖降低生產成本并提高零件的可靠性和耐久性,這就需要產品的幾何尺寸及力學性能的高度一致。對熱處理的零件要改善產品性能的一致性,必須降低零件淬火后硬度的分散程度,這就與鋼的淬透性能帶的寬窄程度有直接關系。齒輪心部硬度的一致性將減少熱處理的畸變,從而提高齒輪的精度,并使輪齒表層的殘余壓應力分布更加均勻。美國載貨汽車變速器齒輪和后橋主動圓錐齒輪用鋼有的采用SAE8620鋼和SAFA820鋼制造。美國SAE8620H、SAE8822H等牌號鋼在我國也已開始生產(如寶鋼集團上鋼五廠等)和使用,分別用于中型載貨汽車變速器齒輪和后橋圓錐齒輪。 
   
  國內重型汽車齒輪用鋼 
   
  目前,我國齒輪鋼基本滿足使用和引進技術過程國產化的要求,而重型車傳動齒輪及中重型車的后橋齒輪用鋼,尚有待開發(fā)和生產。根據國內重型汽車的使用技術現狀分析,超載使用和路況較差這兩個問題較為嚴重,而且短期內無法克服,這就使齒輪經常承受較大的過載沖擊載荷。過載沖擊載荷介于疲勞和斷裂應力之間,它對齒輪使用壽命有很大影響,往往造成齒輪早期失效。從這一點來說,大模數重負荷汽車齒輪應選擇Cr-Ni或Cr-Ni-Mo系鋼,如德國的17CrNiM06鋼最好,還有國產20CrNi3H、20CrNiMoH鋼。大功率發(fā)動機的問世促進了新型Cr-Ni-Mo系列齒輪鋼的開發(fā)和應用。如新型齒輪用鋼20CrNi2Mo、17CrNiM06。一汽集團某汽車改裝公司開發(fā)了一種新型載貨汽車橋,其特點是匹配發(fā)動機的功率大。為保證齒輪的使用壽命,對齒輪的材料及質量有了更高的要求,原采用22CrMoH鋼制成的后橋主動圓錐齒輪在使用過程中出現早期失效,嚴重時甚至出現斷齒現象。在熱處理方面,由于齒輪材料熱處理工藝有時不夠穩(wěn)定,部分齒輪的有效硬化層不夠,齒輪心部和表面硬度偏低,這些都是導致齒輪早期失效的主要原因。而且,Cr容易形成晶間網狀碳化物,有損滲層力學性能。分析發(fā)現,齒輪輪齒心部硬度低時,過渡層塑性變形會引起滲碳層產生過高應力,因而導致滲碳層形成裂紋,最后使整個輪齒斷裂。為此,根據“斯太爾”汽車橋后橋主動圓錐齒輪使用20CrNi3H鋼的良好行車使用效果,應確保齒輪的有效硬化層深度在1.8~2.2mm,齒輪輪齒心部硬度在38~45HRC,齒輪表面硬度在60~64HRC,碳化物在1~3級,馬氏體、殘留奧氏體在1~4級,這樣可使齒輪的使用壽命提高30%~40%。